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Abstract

This paper presents a method for build-
ing genetic language taxonomies based
on a new approach to comparing lexi-
cal forms. Instead of comparing forms
cross-linguistically, a matrix of language-
internal similarities between forms is cal-
culated. These matrices are then com-
pared to give distances between languages.
We argue that this coheres better with
current thinking in linguistics and psy-
cholinguistics. An implementation of this
approach, calledPHILOLOGICON, is de-
scribed, along with its application to Dyen
et al.’s (1992) ninety-five wordlists from
Indo-European languages.

1 Introduction

Recently, there has been burgeoning interest in
the computational construction of genetic lan-
guage taxonomies (Dyen et al., 1992; Nerbonne
and Heeringa, 1997; Kondrak, 2002; Ringe et
al., 2002; Benedetto et al., 2002; McMahon
and McMahon, 2003; Gray and Atkinson, 2003;
Nakleh et al., 2005).

One common approach to building language
taxonomies is to ascribe language-language dis-
tances, and then use a generic algorithm to con-
struct a tree which explains these distances as
much as possible. Two questions arise with this
approach. The first asks what aspects of lan-
guages are important in measuring inter-language
distance. The second asks how to measure dis-
tance given these aspects.

A more traditional approach to building lan-
guage taxonomies (Dyen et al., 1992) answers
these questions in terms ofcognates. A word in

language A is said to be cognate with word in lan-
guage B if the forms shared a common ancestor
in the parent language of A and B. In the cognate-
counting method, inter-language distance depends
on the lexical forms of the languages. The dis-
tance between two languages is a function of the
number or fraction of these forms which are cog-
nate between the two languages1. This approach
to building language taxonomies is hard to imple-
ment in toto because constructing ancestor forms
is not easily automatable.

More recent approaches, such as Kondrak’s
(2002) and Heggarty et al’s (2005) work on di-
alect comparison, take the synchronic word forms
themselves as the language aspect to be compared.
Variations on edit distance (see Kessler (2005) for
a survey) are then used to evaluate differences be-
tween languages for each word, and these differ-
ences are aggregated to give a distance between
languages or dialects as a whole. This approach
is largely automatable, although some methods do
require human intervention.

In this paper, we present novel answers to the
two questions. The features of language we will
compare are not sets of words or phonological
forms. Instead we compare the similarities be-
tween forms, expressed as confusion probabilities.
The distribution of confusion probabilities in one
language is called alexical metric. Section 2
presents the definition of lexical metrics and some
arguments for their being good language represen-
tatives for the purposes of comparison.

The distance between two languages is the di-
vergence their lexical metrics. In section 3, we
detail two methods for measuring this divergence:

1McMahon and McMahon (2003) for an account of tree-
inference from the cognate percentages in the Dyen et al.
(1992) data.
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Kullback-Liebler (herafter KL) divergence and
Rao distance. The subsequent section (4) de-
scribes the application of our approach to automat-
ically constructing a taxonomy of Indo-European
languages from Dyen et al. (1992) data.

Section 5 suggests how lexical metrics can help
identify cognates. The final section (6) presents
our conclusions, and discusses possible future di-
rections for this work.

Versions of the software and data files described
in the paper will be made available to coincide
with its publication.

2 Lexical Metric

The first question posed by the distance-based ap-
proach to genetic language taxonomy is: what
should we compare?

In some approaches (Kondrak, 2002; McMahon
et al., 2005; Heggarty et al., 2005; Nerbonne and
Heeringa, 1997), the answer to this question is that
we should compare the phonetic or phonological
realisations of a particular set of meanings across
the range of languages being studied. There are
a number of problems with using lexical forms in
this way.

Firstly, in order to compare forms from differ-
ent languages, we need to embed them in com-
mon phonetic space. This phonetic space provides
granularity, marking two phones as identical or
distinct, and where there is a graded measure of
phonetic distinction it measures this.

There is growing doubt in the field of phonol-
ogy and phonetics about the meaningfulness of as-
suming of a common phonetic space. Port and
Leary (2005) argue convincingly that this assump-
tion, while having played a fundamental role in
much recent linguistic theorising, is nevertheless
unfounded. The degree of difference between
sounds, and consequently, the degree of phonetic
difference between words can only be ascertained
within the context of a single language.

It may be argued that a common phonetic space
can be found in either acoustics or degrees of free-
dom in the speech articulators. Language-specific
categorisation of sound, however, often restruc-
tures this space, sometimes with distinct sounds
being treated as homophones. One example of
this is the realisation of orthographicrr in Euro-
pean Portuguese: it is indifferently realised with
an apical or a uvular trill, different sounds made at
distinct points of articulation.

If there is no language-independent, common
phonetic space with an equally common similar-
ity measure, there can be no principled approach
to comparing forms in one language with those of
another.

In contrast, language-specific word-similarity is
well-founded. A number of psycholinguistic mod-
els of spoken word recognition (Luce et al., 1990)
are based on the idea of lexical neighbourhoods.
When a word is accessed during processing, the
other words that are phonemically or orthograph-
ically similar are also activated. This effect can
be detected using experimental paradigms such as
priming.

Our approach, therefore, is to abandon the
cross-linguistic comparison of phonetic realisa-
tions, in favour of language-internal comparison
of forms. (See also work by Shillcock et al. (2001)
and Tamariz (2005)).

2.1 Confusion probabilities

One psychologically well-grounded way of de-
scribing the similarity of words is in terms of their
confusion probabilities. Two words have high
confusion probability if it is likely that one word
could be produced or understood when the other
was intended. This type of confusion can be mea-
sured experimentally by giving subjects words in
noisy environments and measuring what they ap-
prehend.

A less pathological way in which confusion
probability is realised is in coactivation. If a per-
son hears a word, then they more easily and more
quickly recognise similar words. This coactiva-
tion occurs because the phonological realisation
of words is not completely separate in the mind.
Instead, realisations are interdependent with reali-
sations of similar words.

We propose that confusion probabilities are
ideal information to constitute the lexical met-
ric. They are language-specific, psychologically
grounded, can be determined by experiment, and
integrate with existing psycholinguistic models of
word recognition.

2.2 NAM and beyond

Unfortunately, experimentally determined confu-
sion probabilities for a large number of languages
are not available. Fortunately, models of spoken
word recognition allow us to predict these proba-
bilities from easily-computable measures of word
similarity.
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For example, theneighbourhood activation
model (NAM) (Luce et al., 1990; Luce and Pisoni,
1998) predicts confusion probabilities from the
relative frequency of words in the neighbourhood
of the target. Words arein the neighbourhoodof
the target if their Levenstein (1965) edit distance
from the target is one. The more frequent the word
is, the greater its likelihood of replacing the target.

Bailey and Hahn (2001) argue, however, that the
all-or-nothing nature of the lexical neighbourhood
is insufficient. Instead word similarity is the com-
plex function of frequency and phonetic similarity
shown in equation (1). HereA,B,C andD are
constants of the model,u andv are words, andd
is a phonetic similarity model.

s = (AF (u)2 + BF (u) + C)e−D.d(u,v) (1)

We have adapted this model slightly, in line with
NAM, taking the similaritys to be the probabil-
ity of confusing stimulusv with form u. Also, as
our data usually offers no frequency information,
we have adopted the maximum entropy assump-
tion, namely, that all relative frequencies are equal.
Consequently, the probability of confusion of two
words depends solely on their similarity distance.
While this assumption degrades the psychological
reality of the model, it does not render it useless, as
the similarity measure continues to provide impor-
tant distinctions in neighbourhood confusability.

We also assume for simplicity, that the constant
D has the value1.

With these simplifications, equation (2) shows
the probability of apprehending wordw, out of
a setW of possible alternatives, given a stimulus
wordws.

P (w|ws) = e−d(w,ws)/N(ws) (2)

The normalising constantN(s) is the sum of the
non-normalised values fore−d(w,ws) for all words
w.

N(ws) =
∑

w∈W

e−d(u,v)

2.3 Scaled edit distances

Kidd and Watson (1992) have shown that discrim-
inability of frequency and of duration of tones in
a tone sequence depends on its length as a pro-
portion of the length of the sequence. Kapatsinski
(2006) uses this, with other evidence, to argue that

word recognition edit distances must be scaled by
word-length.

There are other reasons for coming to the same
conclusion. The simple Levenstein distance exag-
gerates the disparity between long words in com-
parison with short words. A word of consisting of
10 symbols, purely by virtue of its length, will on
average be marked as more different from other
words than a word of length two. For example,
Levenstein distance betweeninterested andrest is
six, the same as the distance betweenrest andby,
even though the latter two have nothing in com-
mon. As a consequence, close phonetic transcrip-
tions, which by their very nature are likely to in-
volve more symbols per word, will result in larger
edit distances than broad phonemic transcriptions
of the same data.

To alleviate this problem, we define a new edit
distance functiond2 which scales Levenstein dis-
tances by the average length of the words being
compared (see equation 3). Now the distance be-
tweeninterested andrest is 0.86, while that be-
tweenrest andby is 2.0, reflecting the greater rel-
ative difference in the second pair.

d2(w2, w1) =
2d(w2, w1)

|w1|+ |w2|
(3)

Note that by scaling the raw edit distance with
the average lengths of the words, we are preserv-
ing the symmetric property of the distance mea-
sure.

There are other methods of comparing strings,
for example string kernels (Shawe-Taylor and
Cristianini, 2004), but using Levenstein distance
keeps us coherent with the psycholinguistic ac-
counts of word similarity.

2.4 Lexical Metric

Bringing this all together, we can define the lexical
metric.

A lexicon L is a mapping from a set of mean-
ingsM , such as “DOG”, “TO RUN”, “GREEN”,
etc., onto a setF of forms such as /pies/, /biec/,
/zielony/.

The confusion probabilityP of m1 for m2 in
lexical L is the normalised negative exponential
of the scaled edit-distance of the corresponding
forms. It is worth noting that when frequencies
are assumed to follow the maximum entropy dis-
tribution, this connection between confusion prob-
abilities and distances (see equation 4) is the same
as that proposed by Shepard (1987).
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P (m1|m2;L) =
e−d2(L(m1),L(m2))

N(m2;L)
(4)

A lexical metric ofL is the mappingLM(L) :
M2 → [0, 1] which assigns to each pair of mean-
ings m1,m2 the probability of confusingm1 for
m2, scaled by the frequency ofm2.

LM(L)(m1,m2)

= P (L(m1)|L(m2))P (m2)

=
e−d2(L(m1),L(m2))

N(m2;L)|M |

whereN(m2;L) is the normalising function de-
fined in equation (5).

N(m2;L) =
∑

m∈M

e−d2(L(m),L(m2)) (5)

Table 1 shows a minimal lexicon consisting only
of the numbers one to five, and a corresponding
lexical metric. The values in the lexical metric are

one two three four five
one 0.102 0.027 0.023 0.024 0.024
two 0.028 0.107 0.024 0.026 0.015
three 0.024 0.024 0.107 0.023 0.023
four 0.025 0.025 0.022 0.104 0.023
five 0.026 0.015 0.023 0.025 0.111

Table 1: A lexical metric on a mini-lexicon con-
sisting of the numbers one to five.

inferred word confusion probabilities. The matrix
is normalised so that the sum of each row is0.2,
ie. one-fifth for each of the five words, so the total
of the matrix is one. Note that the diagonal values
vary because the off-diagonal values in each row
vary, and consequently, so does the normalisation
for the row.

3 Language-Language Distance

In the previous section, we introduced the lexi-
cal metric as the key measurable for comparing
languages. Since lexical metrics are probability
distributions, comparison of metrics means mea-
suring the difference between probability distri-
butions. To do this, we use two measures: the
symmetric Kullback-Liebler divergence (Jeffreys,
1946) and the Rao distance (Rao, 1949; Atkinson
and Mitchell, 1981; Micchelli and Noakes, 2005)
based on Fisher Information (Fisher, 1959). These
can be defined in terms thegeometric path from
one distribution to another.

3.1 Geometric paths

The geometric path between two distributionsP
andQ is a conditional distributionR with a con-
tinuous parameterα such that atα = 0, the distri-
bution isP , and atα = 1 it is Q. This conditional
distribution is called thegeometric because it con-
sists of normalised weighted geometric means of
the two defining distributions (equation 6).

R(w̄|α) = P (w̄)αQ(w̄)1−α/k(α;P,Q) (6)

The functionk(α;P,Q) is a normaliser for the
conditional distribution, being the sum of the
weighted geometric means of values fromP and
Q (equation 7). This value is known as the
Chernoff coefficient or Helliger path (Basseville,
1989). For brevity, theP,Q arguments tok will
be treated as implicit and not expressed in equa-
tions.

k(α) =
∑

w̄∈W 2

P (w̄)1−αQ(w̄)α (7)

3.2 Kullback-Liebler distance

The first-order (equation 8) differential of the nor-
maliser with regard toα is of particular interest.

k′(α) =
∑

w̄∈W 2

log
Q(w̄)

P (w̄)
P (w̄)1−αQ(w̄)α (8)

At α = 0, this value is the negative of the
Kullback-Liebler distanceKL(P |Q) of Q with re-
gard to P (Basseville, 1989). Atα = 1, it is the
Kullback-Liebler distanceKL(Q|P ) of P with re-
gard to Q. Jeffreys’ (1946) measure is a symmetri-
sation of KL distance, by averaging the commuta-
tions (equations 9,10).

KL(P,Q) =
KL(Q|P ) + KL(P |Q)

2
(9)

=
k′(1)− k′(0)

2
(10)

3.3 Rao distance

Rao distance depends on the second-order (equa-
tion 11) differential of the normaliser with regard
to α.

k′′(α) =
∑

w̄∈W 2

log2 Q(w̄)

P (w̄)
P (w̄)1−αQ(w̄)α

(11)
Fisher information is defined as in equation (12).

FI(P, x) = −

∫

∂2 log P (y|x)

∂x2
P (y|x)dy (12)
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Equation (13) expresses Fisher information along
the pathR from P to Q at pointα usingk and its
first two derivatives.

FI(R,α) =
k(α)k′′(α)− k′(α)2

k(α)2
(13)

The Rao distancer(P,Q) alongR can be approxi-
mated by the square root of the Fisher information
at the path’s midpointα = 0.5.

r(P,Q) =

√

k(0.5)k′′(0.5) − k′(0.5)2

k(0.5)2
(14)

3.4 The PHILOLOGICON algorithm

Bringing these pieces together, thePHILOLOGI-
CON algorithm for measuring the divergence be-
tween two languages has the following steps:

1. determine their joint confusion probability
matrices,P andQ,

2. substitute these into equation (7), equation
(8) and equation (11) to calculatek(0),
k(0.5), k(1), k′(0.5), andk′′(0.5),

3. and put these into equation (10) and equation
(14) to calculate the KL and Rao distances
between between the languages.

4 Indo-European

The ideal data for reconstructing Indo-European
would be an accurate phonemic transcription of
words used to express specifically defined mean-
ings. Sadly, this kind of data is not readily avail-
able. However, as a stop-gap measure, we can
adopt the data that Dyen et al. collected to con-
struct a Indo-European taxonomy using the cog-
nate method.

4.1 Dyen et al’s data

Dyen et al. (1992) collected 95 data sets, each pair-
ing a meaning from a Swadesh (1952)-like 200-
word list with its expression in the corresponding
language. The compilers annotated with data with
cognacy relations, as part of their own taxonomic
analysis of Indo-European.

There are problems with using Dyen’s data for
the purposes of the current paper. Firstly, the word
forms collected are not phonetic, phonological or
even full orthographic representations. As the au-
thors state, the forms are expressed in sufficient
detail to allow an interested reader acquainted with

the language in question to identify which word is
being expressed.

Secondly, many meanings offer alternative
forms, presumably corresponding to synonyms.
For a human analyst using the cognate approach,
this means that a language can participate in two
(or more) word-derivation systems. In preparing
this data for processing, we have consistently cho-
sen the first of any alternatives.

A further difficulty lies in the fact that many lan-
guages are not represented by the full 200 mean-
ings. Consequently, in comparing lexical metrics
from two data sets, we frequently need to restrict
the metrics to only those meanings expressed in
both the sets. This means that the KL divergence
or the Rao distance between two languages were
measured on lexical metrics cropped and rescaled
to the meanings common to both data-sets. In
most cases, this was still more than 190 words.

Despite these mismatches between Dyen et al.’s
data and our needs, it provides an testbed for the
PHILOLOGICON algorithm. Our reasoning being,
that if successful with this data, the method is rea-
sonably reliable. Data was extracted to language-
specific files, and preprocessed to clean up prob-
lems such as those described above. An additional
data-set was added with random data to act as an
outlier to root the tree.

4.2 Processing the data

PHILOLOGICON software was then used to calcu-
late the lexical metrics corresponding to the indi-
vidual data files and to measure KL divergences
and Rao distances between them. The program
NEIGHBOR from the PHYLIP2 package was used
to construct trees from the results.

4.3 The results

The tree based on Rao distances is shown in figure
1. The discussion follows this tree except in those
few cases mentioning differences in the KL tree.

The standard against which we measure the suc-
cess of our trees is the conservative traditional tax-
onomy to be found in the Ethnologue (Grimes
and Grimes, 2000). The fit with this taxonomy
was so good that we have labelled the major
branches with their traditional names: Celtic, Ger-
manic, etc. In fact, in most cases, the branch-
internal divisions — eg. Brythonic/Goidelic in
Celtic, Western/Eastern/Southern in Slavic, or

2Seehttp://evolution.genetics.washington.edu/phylip.html.
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Western/Northern in Germanic — also accord.
Note thatPHILOLOGICON even groups Baltic and
Slavic together into a super-branch Balto-Slavic.

Where languages are clearly out of place in
comparison to the traditional taxonomy, these are
highlighted: visually in the tree, and verbally in
the following text. In almost every case, there are
obvious contact phenomena which explain the de-
viation from the standard taxonomy.

Armenian was grouped with the Indo-Iranian
languages. Interestingly, Armenian was at first
thought to be an Iranian language, as it shares
much vocabulary with these languages. The com-
mon vocabulary is now thought to be the result
of borrowing, rather than common genetic origin.
In the KL tree, Armenian is placed outside of the
Indo-Iranian languages, except for Gypsy. On the
other hand, in this tree, Ossetic is placed as an
outlier of the Indian group, while its traditional
classification (and the Rao distance tree) puts it
among the Iranian languages. Gypsy is an Indian
language, related to Hindi. It has, however, been
surrounded by European languages for some cen-
turies. The effects of this influence is the likely
cause for it being classified as an outlier in the
Indo-Iranian family. A similar situation exists for
Slavic: one of the two lists that Dyen et al. of-
fer for Slovenian is classed as an outlier in Slavic,
rather than classifying it with the Southern Slavic
languages. The other Slovenian list is classified
correctly with Serbocroatian. It is possible that
the significant impact of Italian on Slovenian has
made it an outlier. In Germanic, it is English that
is the outlier. This may be due to the impact of the
English creole, Takitaki, on the hierarchy. This
language is closest to English, but is very distinct
from the rest of the Germanic languages. Another
misclassification also is the result of contact phe-
nomena. According to the Ethnologue, Sardinian
is Southern Romance, a separate branch from Ital-
ian or from Spanish. However, its constant contact
with Italian has influenced the language such that
it is classified here with Italian. We can offer no
explanation for why Wakhi ends up an outlier to
all the groups.

In conclusion, despite the noisy state of Dyen et
al.’s data (for our purposes), thePHILOLOGICON

generates a taxonomy close to that constructed us-
ing the traditional methods of historical linguis-
tics. Where it deviates, the deviation usually
points to identifiable contact between languages.
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Greek ML
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Greek K
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Waziri
Armenian List

Baluchi
Persian List
Tadzik

Ossetic
Bengali

Hindi
Lahnda
Panjabi ST

Gujarati
Marathi

Khaskura
Nepali List

Kashmiri
Singhalese

Gypsy Gk
ALBANIAN
Albanian G
Albanian C

Albanian K
Albanian Top

Albanian T
Bulgarian

BULGARIAN P
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Macedonian
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SERBOCROATIAN P

SLOVENIAN P
Byelorussian
BYELORUSSIAN P

Russian
RUSSIAN P
Ukrainian
UKRAINIAN P

Czech
CZECH P
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POLISH P
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Figure 1: Taxonomy of 95 Indo-European data
sets and artificial outlier usingPHILOLOGICON

andPHYLIP
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5 Reconstruction and Cognacy

Subsection 3.1 described the construction of geo-
metric paths from one lexical metric to another.
This section describes how the synthetic lexical
metric at the midpoint of the path can indicate
which words are cognate between the two lan-
guages.

The synthetic lexical metric (equation 15) ap-
plies the formula for the geometric path equation
(6) to the lexical metrics equation (5) of the lan-
guages being compared, at the midpointα = 0.5.

R 1

2

(m1,m2) =

√

P (m1|m2)Q(m1|m2)

|M |k(1
2 )

(15)

If the words form1 andm2 in both languages have
common origins in a parent language, then it is
reasonable to expect that their confusion probabil-
ities in both languages will be similar. Of course
different cognate pairsm1,m2 will have differing
values forR, but the confusion probabilities inP
andQ will be similar, and consequently, the rein-
force the variance.

If eitherm1 or m2, or both, is non-cognate, that
is, has been replaced by another arbitrary form
at some point in the history of either language,
then theP andQ for this pair will take indepen-
dently varying values. Consequently, the geomet-
ric mean of these values is likely to take a value
more closely bound to the average, than in the
purely cognate case.

Thus rows in the lexical metric with wider dy-
namic ranges are likely to correspond to cognate
words. Rows corresponding to non-cognates are
likely to have smaller dynamic ranges. The dy-
namic range can be measured by taking the Shan-
non information of the probabilities in the row.

Table 2 shows the most low- and high-
information rows from English and Swedish
(Dyen et al’s (1992) data). At the extremes of
low and high information, the words are invari-
ably cognate and non-cognate. Between these ex-
tremes, the division is not so clear cut, due to
chance effects in the data.

6 Conclusions and Future Directions

In this paper, we have presented a distance-
based method, calledPHILOLOGICON, that con-
structs genetic trees on the basis of lexica
from each language. The method only com-
pares words language-internally, where compari-
son seems both psychologically real and reliable,

English Swedish 104(h− h̄)
Low Information

we vi -1.30
here her -1.19
to sit sitta -1.14
to flow flyta -1.04
wide vid -0.97

:
scratch klosa 0.78
dirty smutsig 0.79
left (hand) vanster 0.84
because emedan 0.89

High Information

Table 2: Shannon information of confusion dis-
tributions in the reconstruction of English and
Swedish. Information levels are shown translated
so that the average is zero.

and never cross-linguistically, where comparison
is less well-founded. It uses measures founded
in information theory to compare the intra-lexical
differences.

The method successfully, if not perfectly, recre-
ated the phylogenetic tree of Indo-European lan-
guages on the basis of noisy data. In further work,
we plan to improve both the quantity and the qual-
ity of the data. Since most of the mis-placements
on the tree could be accounted for by contact phe-
nomena, it is possible that a network-drawing,
rather than tree-drawing, analysis would produce
better results.

Likewise, we plan to develop the method
for identifying cognates. The key improvement
needed is a way to distinguish indeterminate dis-
tances in reconstructed lexical metrics from deter-
minate but uniform ones. This may be achieved by
retaining information about the distribution of the
original values which were combined to form the
reconstructed metric.
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measure.Sankhȳa, 4:345–365.

Todd M. Bailey and Ulrike Hahn. 2001. Determinants
of wordlikeness: Phonotactics or lexical neighbor-
hoods?Journal of Memory and Language, 44:568–
591.

Michle Basseville. 1989. Distance measures for signal
processing and pattern recognition.Signal Process-
ing, 18(4):349–369, December.

279



D. Benedetto, E. Caglioti, and V. Loreto. 2002. Lan-
guage trees and zipping.Physical Review Letters,
88.

Isidore Dyen, Joseph B. Kruskal, and Paul Black.
1992. An indo-european classification: a lexicosta-
tistical experiment. Transactions of the American
Philosophical Society, 82(5).

R.A. Fisher. 1959.Statistical Methods and Scientific
Inference. Oliver and Boyd, London.

Russell D. Gray and Quentin D. Atkinson. 2003.
Language-tree divergence times support the ana-
tolian theory of indo-european origin. Nature,
426:435–439.

B.F. Grimes and J.E. Grimes, editors. 2000.Ethno-
logue: Languages of the World. SIL International,
14th edition.

Paul Heggarty, April McMahon, and Robert McMa-
hon, 2005.Perspectives on Variation, chapter From
phonetic similarity to dialect classification. Mouton
de Gruyter.

H. Jeffreys. 1946. An invariant form for the prior prob-
ability in estimation problems.Proc. Roy. Soc. A,
186:453–461.

Vsevolod Kapatsinski. 2006. Sound similarity rela-
tions in the mental lexicon: Modeling the lexicon as
a complex network. Technical Report 27, Indiana
University Speech Research Lab.

Brett Kessler. 2005. Phonetic comparison algo-
rithms. Transactions of the Philological Society,
103(2):243–260.

Gary R. Kidd and C.S. Watson. 1992. The
”proportion-of-the-total-duration rule for the dis-
crimination of auditory patterns. Journal of the
Acoustic Society of America, 92:3109–3118.

Grzegorz Kondrak. 2002.Algorithms for Language
Reconstruction. Ph.D. thesis, University of Toronto.

V.I. Levenstein. 1965. Binary codes capable of cor-
recting deletions, insertions and reversals.Doklady
Akademii Nauk SSSR, 163(4):845–848.

Paul Luce and D. Pisoni. 1998. Recognizing spoken
words: The neighborhood activation model.Ear
and Hearing, 19:1–36.

Paul Luce, D. Pisoni, and S. Goldinger, 1990.Cog-
nitive Models of Speech Perception: Psycholinguis-
tic and Computational Perspectives, chapter Simi-
larity neighborhoods of spoken words, pages 122–
147. MIT Press, Cambridge, MA.

April McMahon and Robert McMahon. 2003. Find-
ing families: quantitative methods in language clas-
sification. Transactions of the Philological Society,
101:7–55.

April McMahon, Paul Heggarty, Robert McMahon,
and Natalia Slaska. 2005. Swadesh sublists and the
benefits of borrowing: an andean case study.Trans-
actions of the Philological Society, 103(2):147–170.

Charles A. Micchelli and Lyle Noakes. 2005. Rao dis-
tances.Journal of Multivariate Analysis, 92(1):97–
115.

Luay Nakleh, Tandy Warnow, Don Ringe, and
Steven N. Evans. 2005. A comparison of
phylogenetic reconstruction methods on an ie
dataset. Transactions of the Philological Society,
103(2):171–192.

J. Nerbonne and W. Heeringa. 1997. Measuring
dialect distance phonetically. InProceedings of
SIGPHON-97: 3rd Meeting of the ACL Special In-
terest Group in Computational Phonology.

B. Port and A. Leary. 2005. Against formal phonology.
Language, 81(4):927–964.

C.R. Rao. 1949. On the distance between two popula-
tions. Sankhȳa, 9:246–248.
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